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ABSTRACT 

Subdivision Based Shape Optimization of Compliant Mechanisms 

(May 2011) 

Akshat Singh, B.E. V.N.S.G. University, India 

Chairman of Advisory Committee: Dr. Hong Zhou 

Shape optimization is basically the idea of generating the best profile of a 

surface so that it improves its mechanical properties and minimizes some other properties 

such as weight and reduces stress concentration factor at corners. It is an important 

practice since it largely saves time, cost and material during the designing process. 

Using method of subdivision includes refining a coarse grid of vertices to 

produce a set of refined vertices. This would alter the geometric features of the surface. 

The final shape and surface smoothness depends on the kind of refinement scheme 

applied to it and the number of iterative meshes the surface goes through for refinement. 

In this thesis, Chaikin's method for subdivision will be used to subdivide the 

control points on the surfaces of two compliant mechanisms. Compliant displacement 

inverter and amplifier, and compliant gripper will be used for this analysis. For analysis 

purposes, the regular quadrilateral discretization and modified quadrilateral discretization 

will be considered as the topological optimization conditions for both the mechanisms. 

Style and format based on American Society of Mechanical Engineers 
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CHAPTER I 

INTRODUCTION 

1.1 Shape Optimization 

Shape optimization is the practice of finding the best profile for a component so 

that it has superior mechanical properties. When optimizing for shape, geometric 

modeling and structural analysis are integrated into one absolute, automated computer-

aided design process. The boundary profile for any element of a 2-D or 3-D structure 

having least mass can be determined, under constraints of certain geometrical and 

structural responses, by shape optimization techniques. By making use of results from the 

analysis programs, the design can be improved efficiently. During the design process, 

there is a continuous change in the shape of the object, therefore, careful consideration is 

required for the following: 1) to describe the change in boundary shape, 2) to maintain an 

appropriate finite element mesh, 3) to improve the correctness of the sensitivity analysis, 

4) to impose proper constraints and 5) to utilize existing optimization methods to solve 

the shape optimization problem. Because of its benefits of cost, material and time saving 

in engineering design, shape optimization holds an important area in the field of research. 

1.2 Subdivision 

Subdivision is the method of representing a smooth surface by specifying 

dense linear mesh for each element of the surface. By the process of recursive 

subdivision of each polygonal face of the coarse mesh into smaller polygons, a smoother 

Style and format based on American Society of Mechanical Engineers 
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surface is obtained. It is necessary to define the subdivision surfaces recursively in order 

to obtain smoother, better surfaces. Initially, the process requires a given polygonal mesh 

to which a refinement scheme needs to be applied. The refinement scheme when applied 

to the given polygonal mesh subdivides that mesh. As a result of this subdivision, new 

vertices and new faces are created. The positions of these new vertices are calculated 

based upon the locations held by the immediately surrounding old points. 

The new surface obtained after the subdivision of the given polygonal mesh, 

contains a mesh which is denser than the original one since it contains more polygonal 

faces. By iterative application of this refinement scheme to the new mesh, the limit 

subdivision surface can be obtained. 

Currently, the standard method practiced for modeling of shapes is non-uniform 

rational B-splines (NURBS). In this representation, a inflexible rectangular mesh of 

control vertices are used. This representation uses two knot vectors, one along each 

direction of the edge of the rectangle. Because of this, it has a disadvantage while 

estimating the shapes of commonly used topology. For example, it becomes difficult to 

represent surfaces that have holes or that have complex geometry by NURBS. However, 

the results obtained by using subdivision surfaces compliment the solutions obtained 

from NURBS. Because of its high efficiency, flexibility and simplicity, subdivision 

surfaces form an integral part in computer graphic applications. 

1.3 Current Research Situation 

In his recent work, Z. Wu [1] proposed a highly accurate and efficient approach 

for shape optimization based on finite element method in association with the popularly 

Style and format based on American Society of Mechanical Engineers 
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used fully stressed design criteria. In this method, the aim was to decrease the value of 

the stress concentration factor. The stress value at a fixed point was considered to be the 

threshold value thus avoiding the restriction on the initial design boundary shape. V. 

Braibant and C. Fleury [2] showed in their work that B-splines, because of their flexible 

nature and ability to implement easily with complex shapes, are the most powerful tool 

for optimum shape design of elastic shapes. J. Stam [4] made an important contribution 

by providing a convenient and efficient technique for evaluating the Catmull-Clark 

subdivision surfaces. The surfaces were expressed by certain eigenbasis functions.These 

functions depend on refinement scheme. Because of this contribution many algorithms 

and investigation techniques which were calculated for parametric shapes can now be 

extended to Catmull-Clark surfaces. D. Zorin and D. Kristjansson [3] did an extension of 

the contributions of J. Stam by taking into consideration the subdivision rules for 

piecewise smooth surfaces with boundaries depending on parameters. They used a varied 

sets of basis vectors, which were proportional to the coefficients of subdivision rules, for 

evaluating the surfaces. H. Suzuki, T. Kanai, et al. [5] used Subdivision Limit Position 

(SLP) for adjusting the control mesh accordingly so that it fits to the data points. 

However this method is only useful when it is required to create a surface that represents 

general shape consisting of all the data points. A new algorithm based on quasi-

interpolation was introduced by N. Litke, A. Levin and P. Schroder [6] according to 

which a Catmull-Clark subdivision surface can be fit to a specified shape within a given 

allowable tolerance. This technique helps in efficiently creating highly detailed features. 

K.C. Hui and Y.H. Lai [7] proposed an approach by which subdivision surfaces of an 

object can be created from profile curves lying on the two principle planes. For creating 
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the surface, it is required to interpolate those surfaces which were generated from 

sweeping the profile curves about the principle axis. This is a flexible technique bye 

which objects can be generated at various mesh resolutions. J. Lian and Y. Yang [8] 

introduced a new scheme called the Cross scheme for surface design where the number of 

vertices were doubled from current level to next subdivision level after each application 

of the C-scheme. This scheme gives better results than the Catmull-Clark scheme not 

only at nearby vertices but also in non-vertical and non-horizontal directions. H. 

Biermann, I. M. Martin, et al. [9] worked on a method where sharp features and trim 

regions can be created on Catmull-Clark multi resolution subdivision surfaces with a 

given set of user-defined curves. In their algorithm, the parameterization of a defined 

surface is changed so that it aligns with a pre-image of the feature curves in the parameter 

domain which produced a surface similar to the initial surface with curves passing 

through the mesh edges or the face diagonals. Application of special subdivision rules 

along the curves then would help in creating sharp profiles and trimming by removing the 

mesh portion inside the trim curve. A new method of subdivision was introduced by 

Loop [21] based on the subdivision of triangles called the Binary Loop Subdivision. 

According to his algorithm, each triangle in the previous mesh is subdivided into four 

new smaller triangles. Later, Loop [22] extended his own work to subdivide a triangle 

into nine triangles. This method is called Ternary Loop Subdivision. J. Stam and C. 

Loop [10] introduced a new hybrid quad/triangle scheme which unifies Catmull-Clark 

and Loop surfaces in a single framework. Since their algorithm makes use of both the 

triangular and quadrilateral meshing schemes, the surface produced is better than those in 

the previous schemes. 
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1.4 Motivation and Objectives 

In this thesis we focus our attention on optimizing the geometric features such as 

shape and smoothness of two examples of compliant mechanisms, i.e, compliant 

displacement inverter and amplifier, and compliant gripper. 

Topological optimization techniques of regular quadrilateral discretization and 

modified quadrilateral discretization will be used for subdivision process for both the 

examples. 

Chaikin's algorithm for subdivision of surfaces will be used to compute the 

position of new vertices. 

According to this criterion, the locations of the new points are calculated based on 

positions of the neighboring vertices. 

This process will be repeated till the desired shape and smoothness is achieved. 

The results from this analysis can be used in the design of compliant mechanisms 

and geometric modeling. 

1.5 Thesis Organization 

This thesis is divided into five chapters. 

The first chapter gives a brief introduction about shape optimization and 

subdivision surfaces. Current research situation and objectives of this thesis are also 

reviewed in this chapter. 

Chapter two discusses the Chaikin's algorithm for subdivision. 

The third chapter deals with the other subdivision schemes commonly used. 
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Subdivision and shape optimization for compliant mechanisms is discussed in 

chapter four. Examples of compliant displacement inverter and amplifier, and compliant 

gripper are also discussed in this chapter. 

Chapter five concludes the thesis work and throws some insight on the future 

work that can be done on this topic. 
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CHAPTER II 

CHAIKIN'S ALGORITHM FOR SUBDIVISION 

In this chapter, the background and basics of subdivision, in general, are 

discussed. Chaikin's algorithm [23] for subdivision being one of the most simplest, 

straightforward and easy to implement is also discussed. Because of its ease of 

implementation for both closed and open loop surfaces, this method can be implemented 

on any given initial mesh. 

2.1 Background and Definition of Subdivision 

The origin of subdivision surfaces can be traced back to the late 40s and 50s when 

a method called "corner-cutting" was used by G. de Rham for describing smooth curves. 

Catmull and Clark and Doo and Sabin made important contributions when they used 

subdivision for modeling surfaces. Since then subdivision surfaces have held an vital role 

in CAGD applications. 

Subdivision is basically a method of subdividing a shape recursively till a 

surface of desired shape and smoothness is achieved. The process of subdivision involves 

refining a given polygonal mesh on the surface. The new polygonal mesh formed after 

each step of subdivision contains the new vertices whose positions are calculated with 

respect to the vertices of the polygonal mesh in the previous step. The new surface 

obtained after the subdivision of the given polygonal mesh, contains a mesh which is 

denser than the original one since it contains more polygonal faces. By iteratively 

applying this refinement scheme to the new mesh, the limit subdivision surface can be 

7 
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obtained. The surface shape can be altered by choosing a different set of control points to 

form different control polygons for each mesh refinement. 

2.2 Chaikin's Algorithm for Subdivision 

Chaikin's algorithm for subdivision of surfaces is the most simplest and easy to 

implement algorithm. It can be easily implemented on both closed loop and open loop 

surfaces. Figures 1 and 2 show the implementation of Chaikin's algorithm for closed and 

open loop conditions. 

Figure 1 Subdivision of Closed Loop using Chaikin's Method for "Corner Cutting" : (a) 

First Mesh; (b)-(d) New Meshes After 1st, 2nd & 3rd Generations. [20] 
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Figure 2 Subdivision of Open Loop using Chaikin's Comer Cutting Algorithm [16] 

By applying Chaikin's algorithm, a quadratic B-spline curve is generated from a 

polygon after its comers are cut successively in during refinement. Because of this 

refinement scheme, two new points are inserted on each polygon leg. 
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2.3 Topological Rules for Chaikin's Algorithm 

Chaikin's subdivision scheme is carried out by cutting off the corners of the intial 

control mesh. Figure 3 depicts the topological rules that should be followed while 

applying Chaikin's corner cutting scheme. Every corner in the initial control mesh yields 

two new vertices. These vertices are located on the edges joining the old vertex. Thus, a 

new edge of length shorter than the older edge is formed by joining these new vertices. 

The same procedure is continued for all the vertices thus reducing the length of all the 

edges. 

Figure 3 Topological Rules for Chaikin's Scheme [20] 
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2.4 Geometric Rules for Chaikin's Algorithm 

For a polygon with n vertices, the subdivision mask used for calculating the new 

control vertices by Chaikin's algorithm is: 

1 3 
**—*._, + -*, ( 2 ] ) 

" i + i = ! * , + r f + 1 ( 2 2 ) 

A new polygon is formed by joining the newly created points. By repeated corner 

cutting, quadratic B-spline curve is generated as the limit surface. 

The number of vertices generated after each refinement of the mesh is usually 

double the number of the older vertices. Therefore, the user has a greater control over the 

control nodes if the aim is to optimize the object for shape. 
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CHAPTER III 

OTHER SUBDIVISION SCHEMES 

The smoothness and shape of the limit surface depends on two most important 

things: the type of refinement scheme applied, and the number of times the initial mesh is 

subdivided using the selected refinement scheme. In this chapter, an overview is given to 

describe the general classification of the subdivision schemes. Based on these 

classifications, several subdivision schemes are briefly discussed. 

3.1 Background and Definition 

The origin of subdivision surfaces can be traced back to the late 40s and 50s when 

a method called "corner-cutting" was used by G. de Rham for describing smooth curves. 

Catmull and Clark and Doo and Sabin made important contributions when they used 

subdivision for modeling surfaces. Since then subdivision surfaces have held an vital role 

in CAGD applications. 

Subdivision is basically a method of subdividing a shape recursively till a surface 

of desired shape and smoothness is achieved. The process of subdivision involves 

refining a given polygonal mesh on the surface. The new polygonal mesh formed after 

each step of subdivision contains the new vertices whose positions are calculated with 

respect to the vertices of the polygonal mesh in the previous step. The new surface 

obtained after the subdivision of the given polygonal mesh, contains a mesh which is 

denser than the original one since it contains more polygonal faces. By iteratively 

applying this refinement scheme to the new mesh, the limit subdivision surface can be 

12 
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obtained. The surface shape can be altered by choosing a different set of polygons for 

each mesh refinement. 

Every Subdivision scheme is governed by two basic combination of rules: 

Topological rules and Geometric Rules. 

Subdividing any given mesh into a refined mesh is governed by topological rules. 

After a subdivision scheme is chosen, new control nodes are inserted into the old edges or 

faces based on these topological rules. These topological rules also define the connection 

between the old vertices and the new vertices. [20] 

Geometric rules help in calculating the exact locations of the new control vertices 

in the new refined mesh. Affine invariance, subdivision masks, proportionality of the 

mesh, and how the final surface behaves need to be considered while deciding on setting 

the geometric rules for mesh refinement. [20] 

3.2 Classification of Subdivision Refinement Schemes 

The refinement schemes can be classified as follows: 

1. On the basis of the refinement rule. 

(a) Vertex split. 

(b) Face split. 

2. On the basis of the mesh generated. 

(a) Triangular mesh. 

(b) Quadrilateral mesh. 

3. The refinement scheme can be approximating scheme or an interpolating one. 

4. On the basis of smoothness of the limit surfaces for regular meshes (CI, CI etc.) 
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The following table gives a general classification of the refinement schemes: 

Table 1 Classification of Subdivision Schemes [19] 

Face Split 

Approximating 

Interpolating 

Triangular Meshes 

Loop (C2) 

Mod. Butterfly (C1) 

Quad. Meshes 

Catmull-Clark 

(C2) 

Kobbelt (C1) 

Vertex Split 

Doo-Sabin, Midedge (C1) 

Biquartic (C2) 

Chaikin's Algorithm 

Type of Mesh 

A subdivision scheme depends mainly on the control mesh. A control mesh is formed by 

joining a set of regularly spaced vertices on the plane of the surface. But the face of the 

mesh can be formed in various ways depending on the order in which the vertices are 

joined. For a regular polygon, the face polygon can be chosen by selecting so that they 

form (1) quadrilaterals, (2) triangles and (3) hexagons. Meshes with hexagonal polygons 

are not commonly used. Quadrilateral and triangular meshes are the most convenient and 

widely used. 

Face Split and Vertex Split 

After deciding the type of mesh to be used, it is required to define how the refined mesh 

is related to the older mesh. A refined mesh can be generated by two approaches: (a) face 
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split or primal, (b) vertex split or dual. Figure 4 [19] depicts the face split scheme. For a 

face split scheme, every face of triangular or quadrilateral mesh can be subdivided into 

four faces. In case of a quadrilateral mesh, an extra vertex is inserted for each face. For a 

vertex split scheme (figure 4), new vertices are generated for each old vertex, one on each 

face adjacent to the old vertex. As a result of this scheme, new faces are obtained for 

every edge and also for all vertices. The new vertices that are created all have a valence 

of 4. Vertex split scheme for triangular meshing result in non-nesting hexagonal meshes. 

Quadrilateral meshing overcomes this drawback as both the face split and vertex split 

schemes can be applied to it. 

ii i 

< U — * • 

A-

Face, split for quads 

Face split for triangles 

Figure 4 Face Split Scheme. [19] 
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Vertex split for quads 

Figure 5 Vertex Split Scheme. [19] 

Approximating and Interpolating Schemes 

Face split schemes can be both approximating or interpolating. The vertices in the 

original mesh also form the vertices of the refined mesh. A certain sequence of control 

points is defined for each old vertex corresponding to various subdivision levels. The 

scheme is approximating if all these points are not in the same sequence whereas the 

scheme is called interpolating if these control points are in the same order. Interpolating 

scheme is convenient to use since control points in the original mesh remain the same 

control points in the limit surface. However, the quality of the surface generated from 

interpolating scheme is not as good as the surface generated from an approximating 

scheme. Approximating schemes also converge faster than the interpolating schemes. 

3.3 Doo-Sabin Subdivision Scheme 

Doo-Sabin scheme [24] is an approximating refinement scheme that was 

introduced by Donald Doo and Malcolm Sabin. 
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The Doo-Sabin subdivision scheme is based on Chaikin's "corner cutting" 

algorithm. It is a generalized tensor product form of algorithm proposed by Chaikin. 

3.4 Topological Rules of Doo-Sabin Subdivision Scheme 

The surfaces generated as a result of Doo-Sabin subdivision scheme are 

generalized version of homogeneous bi-quadratic B-spline surfaces. For a polygon with 

n-vertices, the basic principle to subdivide it with this scheme is to insert n new vertices. 

These new vertices are calculated by a set of geometric rules which are as follows: 

1. Consider vertex Vi on the initial mesh (figure 6 a) which is located on face F and is at 

the meeting point of the adjacent edges. A new point 1 is created such that it is a 

weighted average of (a) Vi, (b) the center points of edges (V1-V2 and V1-V10) which are 

adjacent to Vi, and (c) the face point which is mean of all the points of that face F. The 

same process can be repeated for all the vertices to obtain all the new points (Figure 6 b). 

2. Again, consider the face F containing all the new points 1, 2, 3, 4. Connecting all these 

points will form a polygon which now becomes a new face on the refined surface. The 

polygons formed in the process are called Face-polygons (or F-polygons). The same 

procedure can be repeated for all other faces (Figure 6 c). 

3. A vertex is usually common to several faces. Consider a vertex such as Vn as the 

same. By connecting all the points (3, 8, 17, 22 ) close to this vertex Vn, a new polygon 

will be formed. Now, this polygon becomes the face in the subdivided surface. The 

polygons formed in the process are called Vertex-polygons (or V-polygons). The same 

procedure can be repeated for all other faces (Figure 6 e). 
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4. Consider the edge Vio-Vn in the initial mesh. There are two faces which are adjacent 

to this edge and contain the new points. A new polygon is formed by joining all the new 

points (4, 3, 22, 21) around this edge. This polygon then becomes the face in the new 

surface. The polygons formed in the process are called Edge-polygons (or E-polyons). 

The same procedure can be repeated for all other faces (Figure 6 d). 

Vn 

- WWW'S8" ™2r~*«i* 

V 12 

V, 

v« 

* 

V.< 

Figure 6 (a) Initial Polygon 
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Figure 6 (b) Locating the Points 

Figure 6 (c) Face Polygons 
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Figure 6 (d) Edge-Polygons 

Vc 
# • 

v i ( 

*24 
#21 

• 
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I 

23* 

1 « f c » * ! • • 
#17 
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jsmmu M ^ » *iw 

V2 

Figure 6 (e) Vertex-Polygons 
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To get the first refinement of the initial mesh, all the polygons formed by the 

above steps are joined. This will give a new refined surface to which the refinement 

scheme can be applied again in the same manner to refine it further. This is shown in 

figure 6 (f). 

(f) 1 st Refinement 

Figure 6 (a)-(f) Doo-Sabin Subdivision Steps and 1st Refinement. 

3.5 Geometric Rules of Doo-Sabin Subdivision Scheme 

Doo-Sabin surfaces only require one subdivision mask. The same subdivision 

mask can be used for all the faces. 

For any regular face containing four sides, the subdivision mask can be described 

as follows: 
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v'=^Vo + i V l + ̂ V2 + i V 3 (3-!> 
For an irregular face, the subdivision mask can be defined as: 

7 1 - 1 

t?' = y aivi 

i=o (3.2) 

To calculate the coefficient ai, Doo-Sabin suggested the following: 

n 4-5 

Or, 

m 4n fori = 0 (3.3) 

3 + 2cos ( — ) 
ai~ 4^ for i= l ,2 , . . . ,n - l (3.4) 

The limit surface obtained by using Doo-Sabin subdivision scheme is a quadratic 

spline. Unlike Chaikin's algorithm, Doo-Sabin subdivision scheme cannot be applied to 

open loop. The reason behind this is that the Doo-Sabin subdivision scheme thrives on 

the polygons generated after each refinement. 

3.6 Doo-Sabin and Mid-edge Scheme 

A combination of Doo-Sabin and Mid-edge scheme [18] [19] is applied to the initial 

mesh in figure 6 is shown below in figure 7 (a) - (e). 
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Figure 7(a)-(e) Doo-Sabin and Mid-edge scheme 

To apply the Doo-Sabin/Midedge scheme, the intial four vertices are subjected to Doo-

Sabin's subdivision mask. The subdivision mask is given by : 

1 = i V l + i V 2 + ̂ V3 + ̂ V4 (15) 

2 = i V 2 + iV 3 + > + i V l (3-6) 

4 = ^ + ^ + ^ + ^ (3.8) 

where 1, 2, 3, 4 are the four new vertices as shown in figure 7 (b). 

Now, consider the new point 1. To calculate the point 1', auxiliary lines parallel 

to the adjacent edges are drawn from 1 to intersect the adjacent sides at la and lb. Then, 

1' becomes the centre point of the polygon Vj-la-l-lb. Similarly, the points 2', 3' , 4' are 

also located as shown in figure 7 (b). 
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V, 

3b 

Figure 7 (b) 

The 1st refinement of the initial mesh is shown in figure 7 (c). This is the polygon 

that is formed by joining all the new points. Each corner in the previous mesh generates 

three new vertices after each refinement. By following the same procedure, next 

refinement is computed as shown in figure 7 (e). 
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Figure 7 (c) 
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Figure 7(d) 
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r V , 

V, V-

,nd 
Figure 7 (e) 2 Refinement of Initial Mesh 

3.7 Loop Subdivision Scheme 

The Loop subdivision scheme was formulated by Charles Loop. It is an 

approximating scheme. The surfaces generated by this scheme are C2 continuous at all 

the points except at the extraordinary points. At the extraordinary points, the surfaces 

generated are CI continuous. By Loop's algorithm, each triangle in the original mesh is 

divided into 4 new triangles. This is also called binary Loop subdivision algorithm. [21] 
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In the binary Loop subdivision scheme, a vertex point is generated for all the old 

vertices in the initial mesh. Each edge of the triangle also generates a new edge point. 

These new vertices and edge points form the new refined small triangles for the next step 

of refinement. 

Figure 8 Binary Loop Subdivison [16] 

To get a better understanding of the binary Loop subdivision, consider the edge 

V1-V2 as shown in figure 8. This edge is shared by the triangles V1-V11-V2 and V1-V7-V2. 

Now, the edge-point for this edge is calculated as: 

£1= | ( ^ i + ^ ) + g ( t i i + ^ ) .(3.9) 

However, for the edges that form the boundary, the edge point can be calculated 

by averaging the vertices forming the boundary edges. So for edge V3 and Vn, the edge 

point is calculated by 
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Ss-u-ICa+^O (3-10) 

In this case, the edge point is always located on the edge. 

Now to calculate the vertex point, consider the vertex V2. The new vertex point 

for this vertex is calculated by 

Here Q2 is an average of all nodes that connect to V2. 

<?Z = < y 7 + ^ + * i i + ^ o + W 5 (3.12) 

For the vertices that are located on the boundary edge such as V3, the new vertex 

point can be calculated as the weighted addition of 

f ^ + i C ^ + ^ i ) (3.13) 

The main disadvantage of this method is that after some iterations, the surface is 

not smooth at "extraordinary" vertices. This is because the tangent plane loses its 

continuity at extraordinary vertices. An improvement to this scheme called the Ternary 

Loop method [22] was also introduced. The vertex point is calculated as the eweighted 

sum anVi+(l-a„)Qi. Here n is the number of triangles, V; is the vertex that n triangles 

share and Q; can be calculated as the average of the vertices that surround V;. an is 

calculated by 

3 1 2n 3 
<*„= ( - + — cos—Y + -n V8 4- nJ 8 (3.14) 
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A 
/ \ 

Figure 9 Ternary Loop Subdivision [16] 

In this method, a triangle is divided into 9 smaller triangle (figure 9) and the new 

vertices and edges are calculated by using the suitable subdivision mask. 

Figure 10 (a) 

For subdividing a triangle into 9 small triangles, it requires one face point, 2 edge 

points for every edge and 3 new vertex nodes. This is shown in figure 10 (a). 
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In figure 10 (b), 'b ' can be calculated by the subdivision mask shown. It can be 

calculated by adding weights of 7 vertices obtained from 6 triangles. To normalize these 

weights as displayed in figure 10 (b), the weights are divided by the total sum of weights 

which is 81. Similarly all the edge points are calculated. 

"2 1ft 

AT ~~A 
/ \ / \ 

Figure 10 (b) 

Figure 10 (c) shows the subdivision mask for calculating the face point 'c ' . It can 

be calculated by adding weights of 6 vertices obtained from 4 triangles. To normalize the 

weights, the weights have to be divided by their total sum of 27. All the triangles which 

share same vertex determines the position of the vertex point. If n triangles share the 

same vertex 'a', then all the vertices that lie on the same edge as the vertex 'a' have the 

weights (l-a)/n and 'a' has the weight a. It was found that a=5/9 was the most suitable 

weight which worked in most of the cases. 
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Figure 10 (c) 

Figure 10 (a)-(c) Subdivision Masks for Ternary Loop Subdivision [16] 

For applying the binary Loop subdivision scheme to the initial mesh shown in 

figure 6, the initial mesh is divided into 2 triangles as shown in 11 (b). This is because the 

Loop subdivision algorithm works only for triangles. 
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Figure 11 (a) 

Figure 11 (a)-(d) Binary Loop Subdivision for initial mesh with four points 
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Figure 11 (b) 

Since the edges V1-V2, V2-V3, V3-V4 & V4-V1 form the boundary edges, their 

edge points can be located as the midpoint each edge namely Ei, E2, E3 and E4 

respectively. For edge Vi-V3i the edge point E5 can be calculated as: 

S.-fCi+«H+iOS + !« (3,5) 

The vertex points 1, 2, 3, 4 as shown in figure are generated from the old nodes 

Vi, V2, V3 & V4 respectively. New vertex point 1 can be calculated as the weighted sum 

of neighboring boundary vertices. 

i ^ + 5 « + ^ (3,6) 
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Similarly, new vertex points 2, 3, and 4 are also located. The vertex points and 

edge points are joined as shown in figure 11 (c) to get the first refinement of the old 

mesh. 

V, 

V, 

V, V, 

Figure 11 (c) 1st Refinement 

Figure 11 (d) shows the second refinement of the initial mesh. For this 

refinement, the edge point E5 becomes an internal vertex. For an internal vertex, the new 

vertex is calculated by 

E'5= l^s + lQs (3.17) 

Here, 

Qs = ( l + ^ + 2 + E2 + 3 + E 3 + 4 + E 4 ) / 8 ( 3 1 8 ) 
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1 V, 

V. 

Figure 11 (d) 2nd Refinement 

For the second refinement, the edge points and the vertex points are calculated as 

described earlier. After each refinement, the number of triangles becomes four times the 

triangles in the previous refinement step. By Loop's algorithm, the curve produced is 

cubic spline. 
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CHAPTER IV 

SHAPE OPTIMIZATION OF COMPLIANT MECHANISMS 

In this chapter, two examples of quadrilateral discretization and modified 

quadrilateral discretization for compliant mechanisms will be discussed. Compliant 

displacement inverter and amplifier, and compliant gripper are considered for both the 

cases of discretizations. Chaikin's algorithm will be applied on both the discretization 

conditions for both compliant mechanisms. MATLAB will be used for the application of 

Doo-Sabin scheme. 

4.1 Input 

The inputs to a Chaikin's algorithm are the vertices of the polygonal mesh. In 

each refinement level of the scheme, vertices are the only input; the only difference is 

that the vertices will keep on changes in each step. 

4.2 Output 

After the input vertices are fed to the refinement scheme, new positions of the 

new vertices are calculated by it. The old vertices are cut off and the new vertices are 

generated. The length of the edges formed by joining the new vertices goes on decreasing 

with every refinement. The process is continued till the limit surface is obtained. 

The two examples will be discussed here in detail. 

Example 1: Compliant Displacement Inverter and Amplifier. 

Case (a) : Regular Quadrilateral Discretization 

36 
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Step 1: The first step of the Chaikin's subdivision scheme is shown in figure 12. 

20 -

1 5 -

1 0 -

5 -

0 -

0 5 10 15 20 

Figure 12 Initial Mesh 

Figure 12 shows the initial mesh for the regular discretization of compliant 

displacement inverter and amplifier. The figure contains three outer open loops and 1 

closed loop. 

T 
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Step 2: Figure 13 shows the 1st refinement of the initial mesh. 

20 

15 

10 

10 15 20 

Figure 13 1 st Refinement 
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,nd Step 3: Figure 14 shows the 2 refinement of the initial mesh. 

Figure 14 2nd Refinement 
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Step 4: Figure 15 shows the 3rd refinement of the initial mesh. 

Figure 15 3rd Refinement 
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Step 5: Figure 16 shows the 4th refinement of the initial mesh. 

Figure 16 4th Refinement 
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Step 6: Figure 17 shows the 5th refinement of the initial mesh. 

Figure 17 5th Refinement 
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Case (b) : Modified Quadrilateral Discretization 

Step 1: Figure 18 shows the initial mesh. 
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Figure 18 Initial Mesh 
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Step 2: Figure 19 shows 1st refinement the initial mesh. 

5 10 15 

Figure 19 1 st Refinement 

20 
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,nd 
Step 3: Figure 20 shows 2n refinement the initial mesh. 

Figure 20 2nd Refinement 
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,nd Step 4: Figure 21 shows 3n refinement the initial mesh. 

Figure 21 3rd Refinement 
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Step 5: Figure 22 shows 4th refinement the initial mesh. 

Figure 22 4th Refinement 
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Step 6: Figure 23 shows 5th refinement the initial mesh. 
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Figure 23 5th Refinement 
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Example 2: Compliant Gripper. 

Case (a) Regular Quadrilateral Discretization. 

Step 1: Figure 24 shows the initial mesh. 
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Figure 24Initial Mesh 
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Step 2: Figure 25 shows 1st refinement the initial mesh. 

0 5 10 15 

Figure 25 1st Refinement 
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Step 3: Figure 26 shows 2nd refinement the initial mesh. 
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Figure 26 2nd Refinement 
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Step 4: Figure 27 shows 3rd refinement the initial mesh. 

Figure 27 3rd Refinement 
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Step 5: Figure 28 shows 4th refinement of the initial mesh. 

53 

Figure 28 4th Refinement 
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Step 6: Figure 29 shows 5th refinement of the initial mesh. 

20-

15-
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Figure 29 5th Refinement 
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Case (b) : Modified Quadrilateral Discretization 

Step 1: Figure 30 shows the initial mesh. 

55 
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Figure 30 Initial Mesh 
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Step 2: Figure 31 shows 1st refinement of the initial mesh. 
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Figure 31 1 st Refinement 
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Step 3: Figure 32 shows 2nd refinement of the initial mesh. 
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Step 4: Figure 33 shows 3rd refinement of the initial mesh. 

5 10 15 
Figure 33 3rd Refinement 
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Step 5: Figure 34 shows 4th refinement of the initial mesh. 
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Figure 34 4th Refinement 
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Step 6: Figure 35 shows 5th refinement of the initial mesh. 
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Figure 35 5th Refinement 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

In this thesis, shape optimization of compliant mechanisms was done through 

subdivision. The compliant displacement inverter and amplifier, and compliant gripper 

were used as two examples of compliant mechanisms. Regular quadrilateral 

discretizations and modified quadrilateral discretizations were considered as the two 

topological discretizations for both the compliant mechanisms for the purpose of 

subdivision. 

To subdivide the initial mesh of the discretized compliant mechanisms, Chaikin's 

algorithm for corner cutting was used. This method holds benefit over the other popular 

subdivision scheme, i.e., Doo-Sabin subdivision scheme because Chaikin's algorithm can 

be easily applied to both closed and open loops. Since for our analysis purposes, we 

considered only one half of the mechanisms, the figure contained both open loops and 

closed loops. Since the input and output nodes were also fixed, Chaikin's algorithm was 

easily applicable to other control nodes in the control mesh. With each refinement after 

applying Chaikin's algorithm, smooth edges were generated which resulted in the overall 

smoothness of the shape. 

The thesis involved analysis of the two dimensional surface for the compliant 

mechanisms. The analysis can be extended to three dimensional problems as well. Since 

Chaikin's algorithm converges the initial mesh to the desired limit surface slower than 

other subdivision methods. Other popular methods of Doo-Sabin subdivision scheme, 

Catmull-Clark's algorithm for subdivision etc. could be used for faster convergence. 

Work can also be extended where; by selecting different control points on the initial 

61 
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surface, different control polygons can be formed. Subdivision of control polygons 

formed by a combination of different initial control points can also be compared. 
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